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Abstract: It is pointed out that the low energy effective theory of a generalized spin system relates to the more generalized 

system shown by the Hubbard-like model. When the onsite repulsion is assumed to be provided by hard-core repulsion, a 

generalized fermion with flavour and colour degrees of freedom is used to define the Hubbard-like Hamiltonian in this case. In the 

strong coupling limit and at half filling this reduces to an antiferromagnet. The D-theory then helps us to associate the continuum 

limit of the (4+1)D aniferromagnet to 4D principal chiral model. It has been observed that in the strong coupling limit the problem 

of finding the ground state of lattice QCD is identical to that of solving the generalized antiferromagnet with Neel order playing 

the role of chiral symmetry breaking. In view of this, now formulate the Hubbard-like model Hamiltonian in terms of the gener- 

alized fermions with flavor and color degrees of freedom also shall consider the D-theoretical framework to show that the 

antiferromagnetic system which arises in the strong coupling limit and at half filling corresponds to the principal chiral model in 

the continuum limit with dimensional reduction. Also pointed out that at strong coupling and half filling the system reduces to a 

Heisenberg antiferromagnet. This result is analogous to the result obtained in standard Hubbard model. 
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1. Introduction 

The link beten a discretized spin system and field theory is 

now ll established. The framewok theory, which postulates 

that classical fields emerge with dimensional reduction of 

discrete variables, has been used by Wiese and other authors 

[1–4] to study this. In partic- ular it has been shown that in 

the continuum limit of a (2 1)D+  quantum spin model with 

( ) ( ) (1)C L R L RSU N SU N U =× × symmetry is equivalent to the 

2D principal chiral model. At zero temperature (3)O  

symmetries of the (2 1)D+ Heisenberg ferromagnet 

(antiferromagnet) breaks spontaneously giving rise to 

massless Goldstone bosons which are known as magnons or 

spin waves. Magnon's low energy effective theory is an (3)O

model in 2 1+  dimensions. The system experiences 

dimensional reduction to the 2D (3)O model for tiny non-

zero temperatures, which correspond to a finite β  of the 

Euclidean time dimension, because the correlation of the 

Goldstone bosons is large in comparison to β . It is noted 

that dicrete spin variables undergo dimensional reduction to 

2D if the (2 1)D+  has massless Goldstone bosons. In this 

framework the 2D principal chiral model which is generally 

formulated in terms of ( )U N  gauge fields can be represented 

as a system of generalized quantum spins in (2 1)D+ [4]. In 

an earlier paper [5] Langmann and Semenoff have pointed 

out that the dynamics of Gold- stone bosons in the chiral 

symmetry breaking phase of the 2 1+ dimensional quantum 

chromo- dynamics (QCD) is identical to the effective spin 

wave dynamics in the 2 dimensional quantum 

antiferromagnet. 

The fact that fermion propagation brought on by the 

fermion kinetic term in the lattice QCD Hamiltonian is 

inhibited in the strong coupling limit is the key to 

understanding this observation. In this case, the chiral 

symmetry breaking state of QCD corresponds to the Neel 

ordered state of the generalised antiferromagnet. Hover, the 

continuum limit's 3 1+ di- mensional QCD and the strong 

coupling limit's symmetry breaking scheme do not coincide. 

In reality, the chiral symmetry breaking Goldstone bosons in 

this limit are scalars and the mass condensate has flavour. 
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Hover, in spatial continuum QCD, the Goldstone bosons are 

pseudoscalars. The condensate is also a singlet of flavour. 

This implies that at least in the ak coupling continuum limit, 

the realistic model of the 3 1+  dimensional lattice 

formulation of QCD needs to be adjusted [6]. In these section 

shall formulate the D -theoretical framework to show that 

the antiferromagnetic system that arises in the strong 

coupling limit and at half filling corresponds to the principal 

chiral model in the continuum limit with dimensional 

reduction, also will formulate the Hubbard-like model 

Hamiltonian in terms of the generalised fermions with 

flavour and colour degrees of freedom in this section. 

2. Theoretical Background 

A. Hubbard-Like Model and Generalized Spin System 

It has been pointed out that for a generalized spin operator 

in the algebra of ( )FSU N , FN being the number of flavors 

†A a A
aS β

α αβψ τ ψ=                                 (1) 

Where
†a

αψ  and a
βψ are the creation and destruction 

operators of fermion oscillators which satisfythe algebra 

{ }†
, ,,a b
i ab ijjα αββψ ψ δ δ δ=                            (2) 

denote the indices α , β = 1, 2,....., FN , the flavor index, a, 

b = 1, 2,......., CN color index and i , j are spatial positions. 

The fundamental representation of the generators Aτ of 

( )FSU N  corresponds to Hermitian matrices which satisfy 

the algebra 

,A B abc Cifτ τ τ  =                                (3) 

with the normalization condition 

1
( )

2

A B AB
Tr τ τ δ=                              (4) 

The spin operators satisfy the algebra 

,A B ABC C
i j i ijS S if S δ  =                            (5) 

where ( )i j  represents the spatial position of the spin. The 

space on which these operate is theFock space which is 

created by the operators †
,

a
iαψ  

† †
, , .................... 0a a
i jα αψ ψ  

operating on empty vacuum which obeys 

, 0 0a
iαψ =                                   (6) 

Now consider the generalized Hubbard-like model 

Hamiltonian 

†
, , , , , , , , , , , , , , , , , , , , , ,

, , , , , , , , , , , , , , , ,

( . .) ( ) . .a a
i j i a i a i a i b i a i a i a i a i b i c

i j a i a i a i i a b c

H t h c U n n n n U n n n n n n H OTα α α β α α α β γ α α α
α α β α β α β γ α

ψ ψ ′= − + + + + + +∑ ∑ ∑ ∑ ∑  (7) 

Here . .H O T  represent higher order terms and i , j

represent the sites and t is the hopping parameter, , ,i an α is the 

number of fermions at the site i with flavor index α and 

color index a and ( )U U ′ represents the on-site repulsion 

which is considered here as to be caused by hard core 

repulsion. Now here assume that due to hard core repulsion 

the probability of having more than two particles at a single 

site is small and take into account only those terms which 

allow at most two particles at a single site. In view of this 

neglect here the terms involving the coupling U ′  and other 

higher order terms in the Hamiltonian. Using standard 

procedure [7, 8] now derive the corresponding t J− like 

model in the strong coupling limit. In the low energy sector 

the kinetic term kT which transfers one fermion from a singly 

occupied site to the empty one is given by 

†
, , , , , ,

, ,

(1 ) (1 )a a
k i a i i i a

i a

T t n nα α α α
α

ψ ψ− − − −= − − −∑             (8) 

Where †
, ,( )a a
i iα αψ ψ is the annihilation (creation) operator 

associated with the fermion 
a
αψ  at site i . The two site term 

corresponding to a fermion virtually hopping from a site i , to 

a site j  and backwards to site i can be written as 

(1) (1)(1)
1 2H H H= +                            (9) 

where 

2(1) † †
, , , , , , , , , , ,1 ,

, , ,

(1 ) (1 )a a a a
i a i j j a j a j j aj

i j c

H t n n n nα α α α β β ββ
α β

ψ ψ ψ ψ− − − − − − − −= − −∑ ∑                                  (10) 

2(1) † †
, , , , , , , , , , , ,2

, , ,

(1 ) (1 )a a b b
i a i j j a j b j j j b

i j a b

H t n n n nα α α α α α α α
α

ψ ψ ψ ψ− − − − − − − −= − −∑ ∑                                   (11) 

The term
(1)
1H in the Hamiltonian can be expressed as 
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2(1)
, , , , , , , ,1

, , ,

1
2 { . (1 ) (1 )}

4
i j i a i a j a j a

i j a

H t S S n n n nα α β β
α β

− − − −= − − −∑ ∑
r r

                                           (12) 

where have taken the spin operator S
r

at the site i  

†
, ,

, ,

a a
i i j

c

S α αβ β
α β

ψ τ ψ= ∑
r r

                                                                              (13) 

For the term
(1)
2H note that this involves color change which occurs through a gauge transformation 

a b
abUα αψ ψ→                                                                                      (14) 

The color exchange interactions which incorporate the transformations 

, ,

, ,

a b
i ab i

b a
j ba j

U

U

α α

α α

ψ ψ

ψ ψ

→

→
                                                                                   (15) 

imply that the Hamiltonian is a trivial one as this involves only number operators and thus becomes irrelevant. It is noted that 

the three site term corresponding to a fermion virtually hopping from a site i to a site j and then to a site k different from the 

initial one. The Hamiltonian is given by 

(2) (2)(2)
1 2H H H= +                                                                                 (16) 

where 

2(2) † †
, , , , , , , , , , ,1 ,

, , , , ,

(1 ) (1 )a a a a
i a i j j a j a k k aj

i j k a b

H t n n n nα α α α β β ββ
α β

ψ ψ ψ ψ− − − − − − − −
〈 〉

= − −∑ ∑                                (17) 

(2) † †
, , , , , , , , , , , ,2

, , , ,

(1 ) (1 )a a b b
i a i j j a j b j k k b

i j k a b

H n n n nα α α α α α α α
α

ψ ψ ψ ψ− − − − − − − −= − −∑ ∑                                     (18) 

From a similar analysis as in case of 
(1)
2H  observe that the 

term
(2)
2H  becomes irrelevant. 

So consider only
(2)
1H for the three site term. can now 

construct the effective Hamilto- nian effH in the low energy 

sector [7] (dropping the Gutzwiller projectors which prevent 

any final event with more than one fermionoccupying a site). 

It is noted that from our above considerations the effictive 

Hamiltonian takes the form. 

(2)
1

1 1
{ } }

4
eff k i j i j

ij

H T J S S n n H
U

〈 〉

= + − −∑
r r

              (19) 

Here 

2

4
t

J
U

= . The factor 4 arises instead of 2 because 

the sum is over unordered pair sites. It is observed that the 

strong coupling limit does not exactly yield the t J− like 

model given by 

†
, ,

, ,

1
( . .) ( )

4

a a
t J i j i j i j

ij a ij

H t h c J S S n nα α
α

ψ ψ−
〈 〉

= − + + −∑ ∑
r r

  (20) 

as there is an extra term due to
(2)
1H in equation (19) which is 

also of the order of 

2
t

U
. 

Hover if now impose the condition that there is one 

fermion per site regardless of flavor and color, this term can 

be avoided. In fact the occupation number of each site of the 

present system isgiven by 

, ,
2

C F
i a

N N
n α =                            (21) 

and the condition for half filling where there is one fermion 

per site irrespective of flavor andcolor is attained for 

, ,
2

i a

n
n α = with 1n =                         (22) 

it is to be mentioned that in this case the kinetic term also 

becomes irrelevant. Thus pointed out that at strapping 

coupling and half filling the structure reduces to a Heisenberg 

antiferromagnet. This effect is analogous to the consequence 

obtained in standard Hubbard model form. 

Now it is to be noted that the Hubbard-like model 

Hamiltonian has the symmetry ( ) ( )F CU N U N×  whereas the 

antiferromagnetic spin system derived from this in the strong 

coupling limit and at half filling has the symmetry ( )FU N . 



4 Subhamoy Singha Roy:  Generalized Spin-Wave Theory for the Hubbard Model and D-theory Formulation  

 

Indeed in this limit the color degrees of freedom are frozen 

due to confinement. The hidden color degrees of freedom 

appear through spin fluctuation. It may be mentioned that 

small CN corresponds to the quantum limit wherethe spin 

fluctuation becomes important. It is noted that the spin 

fluctuation may be represented by ijQ where 

†
, ,

,

a a
ij i j

a

Q α α
α

ψ ψ=∑                            (23) 

The fluctuation consists of the phase fluctuation as ll as the 

amplitude fluctuation. The latter is effectively a high energy 

mode. Neglecting this consider only the phase 

fluctuationwhich is related to the local gauge transformation

,
a

iαψ and is given by 

, , exp( )a a
i i iiα αψ ψ θ→ −                            (24) 

associate this phase fluctuation with the gauge transformation 

, ,
a b

i ab iUα αψ ψ→                                (25) 

In view of this the color gauge transformation may be 

considered to be caused by the phase fluctuation of the 

fermionic oscillator. 

For an antiferromagnetic system involving these types of 

spin operators the classical Neel ground state is charactized 

by a staggered spin order parameter. Indeed in 2D Read and 

Sachdev [9] have shown that the staggered order parameter is 

given by 

†
, ,

1

( 1) ( )
C

i

N
n a

a i a i
β

αβ
α

µ ψ ψ
=

= − ∑ ∑                         (26) 

where in
 
are certain integers related to lattice structure. For a 

square lattice a site i can be depicted as 1 2
ˆ ˆ

x yi n i a n i a= +

with ˆ
xi ( ˆ

yi ) unit vector, in  integers and a the lattice spacing. 

The limit �� ≫ ��  is the quantum limit where fluctuations 

are important and the system is in a spin disordered state. 

B. Formulation of the Generalizes Spin System in D-theory 

Let us consider the unit vector n
r in terms of the 

spinoperator (1) so that the components of the vector n
r are 

given by 

†1i a i an
k

α αβ βψ τ ψ=                            (27) 

With 

�� =
1

√

��
�
���

� ��
�  

where 
0
αβτ

 
is a unit matrix and 1,2.......... Fi N= . 

Here 
1

k
is a normalization factor so that have the relation 

2 2
0 1

1
FN

ii
n n

=
+ =∑ . 

Now in 3 + 1 dimensional space-time can define the 

topological conserved current 

1 1 1

2

1
( )( )( )

24
J Tr g g g g g gµ µνλσ ν λ σε

π
− − −= ∂ ∂ ∂        (28) 

Where 0 .g n I inτ= + r r

 
with τr  being generators of

( )FSU N . The corresponding charge is given by 

3
0Q J d x= ∫                               (29) 

which is the winding number of the map corresponding to the 

homotopy group 

3( ( ))FSU N Zπ =                           (30) 

In the continuum model of the antiferomagnetic spin 

system the effective action may be taken in Euclidean time 

dimension as 

2 4 1S M d xTr g gµ µ
−= − ∂ ∂∫                  (31) 

with M  being a constant having the dimension of mass. It 

may be mentioned that Radjbar- Daemi, Salam and Strathdee 

[10] considered discrete spin systems with a general 

symmetry group and shod that in the continuum limit this 

corresponds to nonlinear sigma model type field theories. 

This is consistent with the above formulation. 

In this model have two types of generators such that the 

generators kM
 
rotates the vector n

r

 with FN
 
components to 

any chosen axis and the boost generators kN  which mixes 0n  

with the components of n
r

. can now construct the following 

algebra 

[ , ]

[ , ]

[ , ]

i j ijk k

i j ijk k

i j ijk k

M M i M

M M i N

N N i M

ε
ε

ε

=

=

=
                           (32) 

This helps us to introduce the left and right generators 

1
( )

2

1
( )

2

i i i

i i i

L M N

R M N

= −

= +
                           (33) 

which satisfy 

[ , ]

[ , ]

[ , ] 0

i j ijk k

i j ijk k

i j

L L i L

R R i R

L R

ε
ε

=

=

=
                           (34) 
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Thus the algebra has split into two independent subalgebras 

each isomorphic to ( )FSU N  algebra and corresponds to the 

group ( ) ( )F L F RSU N SU N⊗ . The left and right chiral group 

can be taken to correspond to two mutually opposite orientations 

of the magnetization vector associated with the spin [11, 12]. 

In a lattice the action (31) can be written in the form 

S��� = −2��∑ ��[��

��] ��!                 (35) 

It can be shown that the target theory has a global 

( ) ( ) (1)F L F R L RSU N SU N U =× × symmetry of the form 

†
x x xg g Lg R′→ =                           (36) 

It is noted that the fundamental degrees of freedom in the 

action (31) are fields represented by F FN N× matrices. In D-

theory these fields are replaced by operators 
ij
x∧ . The D-

theory Hamiltonian evolves the 4D system in an additional 

Euclidean time dimension. 

By embedding the site operators in an (2 )FSU N algebra it 

can be shown that the site operator variables transform as 

exp( ) exp( )a a b bi L i Rτ τ′∧ = − ∧                   (37) 

where the bτ are the Hermitian generators of ( )FSU N [4]. 

This transformation implies that have the following 

commutation relations 

[ , ]

[ , ]

a ij a kj
ik

a ij ik a
kj

L

R

τ

τ

∧ = − ∧

∧ = ∧
                            (38) 

When the operators are embedded in an (2 )FSU N  

algebra, the ( ) ( )F L F RSU N SU N×
 
algebra is embedded 

diagonally and ij∧
 
operators fill in the off-diagonal blocks 

[13-20]. In fact have the full set of commutation relations. 

[ , ]

[ , ]

[ , ] 2

[ , ] [ , ] [ , ] 0

a ij ik a
kj

a ij a kj
kj

ij ik

a b a b

R

L

T

R L T L L R

τ

τ

∧ = ∧

∧ = − ∧

∧ = ∧

= = =

               (39) 

The operator T generates the extra U (1) symmetry. Thus 

the continuum limit of a (4 + 1)D quantum spin model 

representing the antiferromagnetic system realized from the 

Hubbard-like model in the strong coupling limit and at half-

filling has the symmetry ( ) ( ) (1)F L F RSU N SU N U× × . This 

is equivalent to the 4D principal chiral model of QCD with 

Euclidean time dimension. 

3. Conclusion 

Here, it has been conclude that the low energy effective 

theory of a generalised spin system relates to the more 

generalised system shown by the Hubbard-like model. When 

the on-site repulsion is assumed to be provided by hard-core 

repulsion, the Hubbard-like model Hamiltonian is expressed 

in terms of generalised fermions with flavour and colour 

degrees of freedom. This is reduced to an antiferromagnet at 

half-filling and in the strong coupling limit. The D-theory 

then helps us to associate the continuum limit of the (4 + 1)D 

antiferromagnet to 4D principal chiral model which appears 

as the low energy effective theory of the quantum spin 

model. The chiral symmetry breaking gives rise to 

pseudoscalar Goldstone bosons in conformity with the (3 + 

1)D QCD in the continuum limit. In the ak coupling limit the 

dominance of the hopping term allows fermion propagation 

which coresponds to the color gauge interaction in the lattice 

QCD formulation. 

4. Discussion 

We have shown that the production of low energy 

skyrmionic excitation at the site of a fermion, which propels 

fermionic propagation, destroys the underlying 

antiferromagnetic order. Indeed, form our analysis we have 

note that the rearrangement of the fermionic components 

inside the constrained region of the bound states of the 

interacting system corresponds to this fermionic propagation 

from one place to the next in the continuum limit. As a result, 

a running coupling constant thatleads to asymptotic freedom 

is effectively created. This is equivalent to the interaction 

with anon-Abelian gauge field when the gauge group is 

( )CSU N , CN being the number of colors. This help us to 

the generalised spin fluctuation may be linked to the colour 

gauge field. 
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