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Abstract: In this paper, forced transverse vibrations of an elastic hinge-supported Timoshenko beam are considered, taking 

into account the rotational motion caused by a periodically oscillating concentrated load moving along the beam at a constant 

speed v. This problem is of practical interest in connection with the study of forced transverse vibrations of bridges. The bridge 

span is considered here as a Timoshenko beam of constant transverse cross-section. The problem is solved by the method 

proposed earlier using combined conditions, including dynamic action on the Timoshenko beam and rotational motion relative 

to the bending wave front. The solution of the problem is built in the form of a number of own forms of vibrations. Two types 

of forced transverse vibrations and new resonance frequencies are obtained. The purpose of this study is to assess the effect of 

the identified new forced transverse vibrations for bridges and compare these results. With the solutions obtained by previous 

authors. To show at which new resonant frequency obtained in bridges new resonance phenomena arise. New dynamic 

phenomena in bridges caused by a periodically oscillating concentrated load moving along the beam at a constant speed, play 

an important role in bridge design. This work is a new calculation scheme for the design of bridges. 
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1. Introduction 

Investigations of the transverse vibration of bridges under 

the action of moving loads have been carried out by many 

authors. Among these scientific works, we note, in particular, 

the article by G. G. Stokes [1], where a new problem of the 

movement of a load along a massive beam (Stokes problem) 

was formulated. The problem was not fully resolved. AN 

Krylov investigated the problem of the dynamics of massive 

beams under the influence of a moving force and gave a 

complete solution to this problem [2]. The solution of the 

Stokes problem, further, was considered in the works of SP 

Timoshenko [3-5, 6], where the critical velocities of the 

cargo movement were determined by the Fourier method and 

using generalized coordinates. 

In the work of A. L. Florence, equations of the 

Timoshenko type are used to study the vibrations of a semi-

infinite beam, along which a concentrated transverse force 

moves at a constant speed [7]. The solutions are constructed 

using the Laplace transform method. J. D. Achenbach, C. 

T.Sun [8] considered the problem of motion with a constant 

velocity V of a concentrated force along an infinite 

Timoshenko beam lying on an elastic foundation. By 

replacing the variables v=x - Vt, the equations of motion are 

reduced to a system of two ordinary differential equations for 

the angle of rotation and deflection, which are solved by the 

Fourier transform. 

In the works of Tang Tang Sing-Chih [9], Во1eу В. A. and 

Chi-Chang Сhao [10], the problem of vibrations of the 

Timoshenko beam girder under the action of a moving force, 

which was previously solved using integral transformations 

of A. L. Florence [7], is investigated by the method of 

characteristics numerically. The calculation results are in 

good agreement with the analytical solutions. It was found 

that the computational work costs less when using the 

method of characteristics than when solving by the method of 

integral transformations. 

H. H. Pan [11] examined a similar problem with viscous 

considerations. A lot of literature on this issue can be found 

in the works of P. M. Mathews [12], E. I. Grigolyuk and I. T. 
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Selezov [13]. The idea and basic equations of bending 

vibrations of a cantilever elastic rod with regard to rotational 

motion are given in the previous work [14], when a 

displacement Asinωt is applied to one end, while the other 

end is free. Later, in the study of Mkrtchyan [15], the forced 

transverse vibrations of an elastic hinged-supported rod were 

studied, taking into account the rotational motion, caused by 

a periodically oscillating concentrated load. A number of 

valuable results have been obtained in this direction. This 

article touches upon the problem of vibrations of the 

Timoshenko beam under the action of a moving force, which 

takes into account rotational motions. 

The main task, is solved by dividing it into two tasks, each 

of which deals with forced transverse vibrations of an elastic 

hinged-supported beam Timoshenko, caused by different 

parts of the combined effect, including the dynamic effect on 

the beam Timoshenko and the rotational motion relative to 

the front of the bending wave. Much attention is paid to 

numerical results. Assessment of the influence of rotational 

motion on the dynamic deflections of elastic hinge-supported 

is given beam Timoshenko. 

2. Mathematical Formulation of Problem 

1 and Its Solution 

Consider an elastic homogeneous hinge-supported 

Timoshenko beam having �	 length. Let at the moment � = 0� the beam is acted upon by a periodically oscillating 

concentrated load moving along the beam at a constant 

velocity ν. It is assumed that at the initial moment of time the 

beam was at rest, and the moving load was at its left end (the 

problem of a steam locomotive moving along a railway 

bridge). Let us attribute it to the Cartesian coordinate system 

x, y, z, the x axis of which is directed along the neutral line of 

the non-deformed beam, y and z axes are along the axes of 

symmetry of the cross section. The oscillations of the rod 

occur in avertical plane (xz plane), the geometry of which is 

presented in Figure 1. 

The following problem is posed and solved: it is required 

to determine the forced transverse oscillations of this beam, 

resulting from the application of a moving load in the form 

�	
, t
 = �� sinω�2ε , ν� − ε < 
 < 	ν� + ε,0 − for	other	values	of	
, 		ε → 0
. 

 

Figure 1. The geometry of the problem. 

For the considered task, the forced transverse oscillations 

of the beam, taking into account the effects of transverse 

shear and inertia of rotation, are described by the following 

equations with the boundary and initial conditions [15]: 

Ε& '()'*(  + +,-.'/'* − ψ1=ρ& '()'3(                    (1) 

+,-.4(/4*( − ')'*1 + �	
, t
 = ρ- '(/'3(  


=0,�: 5 = 0;	')'* = 0                            (2) 

� =0:	5 = 0;	'/'3 = 0 

ψ = 0;	')'3 = 0	                              (3) 

where t - is the time; � - is the length of the beam; F - is the 

cross-sectional area; J - is the moment of inertia of the cross 

section; δ() is the delta - Dirac function;	7−centrifugal force; ρ - is density of the material; E, G - 

are Young and shear modules, respectively; k - is a 

dimensionless numerical coefficient, depending on the cross-

sectional shape of the rod; w - is the displacement of the 

center of bending of the section in the direction of the z axis 

(deflection); ψ - is the angle of rotation of the section around 

the center of the bend; ω - is the circular frequency. 

The boundary conditions (2) will be satisfiedif the solution 

of system (1) is presented in the form: 

5 = ∑ 59:9;< 	�
 sinμ9 
	                    (4) 

ψ = ∑ ψ9:9;< 	�
 cos μ9
                    (5) 

where	μ9 = ?π �⁄ . Substituting the values of the functions w 

and ψ from (4) and (5) into system (1), obtain the following 

system of ordinary differential equations with respect to the 

desired functions 59	and	ψ9: 

ρJ C()D	C3(  +	ΕJμEF + +,-
ψ9 − +,-	μ959 = 0 

ρ- C(/D	C3( +	+,-μEF59 − 	+,-	μ9ψ9 = ��G<Hsin		μ9ν + ω
� + sin		μ9ν − ω

�I	                               (6) 

The general solution of system (6) with initial conditions (3) has the form 

59	�
 = Α9 sinω9<�+Β9 sinω9F� + 	��G<HΓ9�Η9� sin		μ9ν + ω
� +Γ9GΗ9G		μ9ν − ω
�I                    (7) 

ψ9	�
 = .	μ9 − NODP(QRSD1 Α9 sinω9<�	+.	μ9 − NOD((QRSD1Β9 sinω9F� + ��G<	μ9HΗ9� sin		μ9ν + ω
� + Η9G sin		μ9ν − ω
�I	  (8) 
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where 

Α9 = �NTODPUODP( GOD(( V {H+,μEF − 	+,μEF − ρω9FF 
Γ9�I		μ9ν + 	ω
	Η9�	+ H+,μEF − 	+,μEF − ρω9FF 
Γ9GI		μ9ν − 	ω
Η9G} 
Β9 = − �NTOD(UODP( GOD(( V {H+,μEF − 	+,μEF − ρω9<F 
Γ9�I		μ9ν + 	ω
	Η9�	+ H+,μEF − 	+,μEF − ρω9<F 
Γ9GI		μ9ν − 	ω
Η9G} 

Η9± ={	ΕJμEZ − [ρ- + .ρJ + N\]QR1 μEF^ 		μ9ν ± ω
F + N(]QR 		μ9ν ± ω
Z}G< 

	Η9±
G< ≠ 0, Γ9± =1+
\]S(̀QRa − N]		SDb±O
(QRa · 

ω9<, ω9F −	represent the natural frequency of the beam Timoshenko and are described by the expression 

ω9c=	2d
G< F⁄ Ue9 + 	−1
c	e9F − 4d+9F
< F⁄ V< F⁄ 	                                                            (9) 

	λ9 = 1 + . ]a + \]QRa1 μEF , +9=i\]Na μEF , γ = N]QRa 

Hereinafter, i=1, 2. 

Substituting the values of the functions	59	�
, ψ9	�
	from (7), (8) into the corresponding equations (4), (5), we find that the 

forced transverse oscillations of the beam under consideration are determined by the law 

5 = �T ∑ HΓ9�Η9� sin		μ9ν + ω
� +Γ9GΗ9G sin		μ9ν − ω
�I:9;< sin k9
	                                  (10) 

ψ = �T ∑ 		μ9HΗ9� sin		μ9ν + ω
� + Η9G sin		μ9ν − ω
�I:9;< cos k9
	                                   (11) 

When the denominator n − x of the terms of series (10), 

(11) becomes equal to zero, the frequency of the disturbing 

force approaches one of the values: 

ω9cl = ±μ9ν ± ω9c , 	κ = 1,2,3,4
, 
which are determined from the conditions 	Η9±
G<=0. In this 

case, obtain a state of resonance. 

 

Figure 2. Perturbed part of the beam. 

3. Mathematical Formulation of 

Problem 2 

Let us consider, within the framework of the refined 

Timoshenko’s theory, the rotational motion of the non-

perturbed part of the beam, relative to the bending wave front 

(Figure 2) (in Figure 2 the same notation is used as in in 

[15]). Rotational motion occurs in the vertical plane xz, 

around the o<  axis and it is carried out by the rotational 

moment M (t), which is formed on the front of the bending 

wave. The following problem is posed and solved: it is 

required to determine in this case the forced transverse 

oscillations 5<(t, x) and ψ<(t, x) resulting from the rotational 

motion of the unperturbed part of the beam, as well as the 

rotational moment M(t) ensuring the specified movement of 

this part of the beam Timoshenko. 

The linear - differential equation of motion and land the 

system of equations of transverse vibrations of an elastic 

hinge-supported beam Timoshenko have the form [15]: 

ρ- p 
q
θs − 5s <	�, 

tTu v
 = w	�
 + ρg- p H
 cos θ + 5<	�, 

 sin θI v
Tu                                    (12) 

ΕJ yFψ<	y
F + 	+,- zy5<y
 − ψ<{ = ρJ yFψ<	y�F  

+,- .'(/P'*( − ')P'* 1 + |	
, �
 = ρ- '(/P	'3(                                                                 (13) 

with boundary and initial conditions: 


	=0, �: 5< = 0;	y	ψ< y
⁄ =0                                                                          (14) 

� = 0:	5< = 0;	y	5< y�⁄ = 0	ψ< = 0;	y	ψ< y�⁄ = 0	                                                                        (15) 
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where q(t, x) are the additional forces that have arisen from the rotational motion of the beam Timoshenko and whose 

dependence on the coordinate x and time t has the form 

|	
, �
 = ~ ρ-q
θs − g cos θt	for	
′ ≤ 
 ≤ �2m� 	ν + ν<
⁄ < � < 	2� + 1
� 	ν + ν<
⁄0 − for	other	values	of	x, t,  

If the bending wave along the beam Timoshenko propagates in the opposite direction, then q(t, x) is represented as 

|	
, �
 = ~ −ρ-q
θs + g cos θt	for	0 ≤ 
 ≤ 
′2�� 	ν − ν<
⁄ < � < 	2� + 1
� 	ν − ν<
⁄0 − for	other	values	of	x, t,  

m=0,1, … 

where 

θ(t)=ψ(t, 
′)                                                                                         (16) 

x' (t) - the law of propagation in the forward and reverse direction of the leading and back edge of the bending wave along 

the beam Timoshenko is given by the equations 


� = 	ν + ν<
� − 2�� 
2�� 	ν + ν<
⁄ < � < 	2� + 1
� 	ν + ν<
⁄                                                                  (17) 

m=0,1,… 


� = 2	� + 1
� − 	ν + ν<
� 	2� + 1
� 	ν + ν<
⁄ < � < 2	� + 1
� 	ν + ν<
⁄ 	                                                              (18) 

m=0,1,… 


� = 	ν − ν<
� − 2�� 
2�� 	ν − ν<
⁄ < � < 	2� + 1
� 	ν − ν<
⁄ 	                                                               (19) 

m=0,1,… 


� = 2	� + 1
� − 	ν − ν<
� 	2� + 1
� 	ν − ν<
⁄ < � < 2	� + 1
� 	ν − ν<
⁄                                                                (20) 

m=0,1,… 

With the help of (11), (16) and (17) in the segment	
� ≤ 
 ≤ �, 2�� 	ν + ν<
⁄ < � < 	2� + 1
� 	ν + ν<
,⁄  m=0,1,… can 

bring θs 	�
 to the following form: 

θs 	�
 = �θs9:
9;< 	�
 

θs9	�
 = −�	2�
G<k9Η9�{Hk9	2ν + ν<
 + ωIF sinH	k9	2ν + ν<
 + ω
� − 2k9��I− 	k9ν< − ω
F sinH	k9ν< − ω
� − 2k9��I} 	− 

−�	2�
G<k9Η9G{Hk9	2ν + ν<
 − ωIF sinH	k9	2ν + ν<
 − ω
t − 2k9��I − 	k9ν< + ω
F sinH	k9ν< +ω
� − 2k9��I} 
After determining the bend w<	t, x
  and the angle of 

rotation of the beam element 	ψ<	t, x
	 the 

requiredrotation moment M(t), providing the specified 

movement in this part of the beam, is calculated by the 

equation (12). 

 

4. Solution of the Problem 2 

The solution of the system (13) (without taking into account 

the beam Timoshenko own weight) will be sought in such a 

form that the boundary conditions (14) and the initial conditions 

(15) are completely satisfied, namely: we assume that: 
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5< = �5<9
:

9;< 	�
 sin k9
, 
2�� 	ν + ν<
⁄ < � < 	2� + 1
� 	ν + ν<
,⁄  m=0,1,…  (21) 

ψ< = �ψ<9
:

9;< 	�
 cos k9 
. 
Substituting the values of 5<	and ψ<	from (21) into system 

(13), we obtain the following system of ordinary differential 

equations for the desired functions 5<9,	ψ<9: 

ρJ vFψ<9v�F + 	ΕJk9F + +,-
ψ<9 − +,-k95<9 = 0, 
ρ- C(/PDC3( + +,-k9F5<9 − +,-k9ψ<9 = |9	�
,     (22) 

where 

|9	�
 =2�G<ρ-θs9	�
�9	
′
, 

�9	
′
 =
���
�
���

1μEF {β9 − Hsin k9
� − k9
� cos k9
�I}	

� ≤ 
 ≤ �, 	2m� 	ν + ν<
⁄ < � < 	2� + 1
� 	ν + ν<
⁄ ,

− 1μEF {Hsin k9
� − k9
� cos k9
�I}	
0 ≤ 
 ≤ 
�, 	2� + 1
� 	ν + ν<
⁄ 	< � < 2	� + 1
� 	ν + ν<
⁄ ,

 

β9 = sin k9� − k9� cos k9� 
Having constructed the solution of the system (22) according to the method of variation of constants under initial conditions 

(15), we conclude that the elastic transverse oscillations of the beam Timoshenko in time of motion are determined by the law: 

5< = ����<9	τ
 sinω9< 	� − �
v� +3
u

��F9	τ
 sinω9F 	� − �
v�3
u

�:
E;< sin k9
 

	
� ≤ 
 ≤ �, 	2m� 	ν + ν<
⁄ 	< � < 	 	2� + 1
� 	ν + ν<
⁄ 
	                                        (23) 

ψ< = ���g<9	τ
 sinω9< 	� − �
v� + � gF9	τ
 sinω9F 	� − �
v�3
u

3
u

�:
9;< cos k9
 

�<9	�
 = θs 9	�
�9	
�
7<9 , �F9	�
 = θs 9	�
�9	
�
7F9 

g<9	�
 = �	μ9 − ρω9<F+,μ9� �<9	�
, gF9	�
 = �	μ9 − ρω9FF+,μ9� �F9	�
 
7<9 = FUQRS(̀GNOD(( VNTODPUODP( GOD(( V, 7F9 = FUQRS(̀GNODP( VNTOD(UODP( GOD(( V. 

Solutions 	23
  after transformations can be represented in the form of necessary and free oscillations caused by the 

disturbing forces q(t, x). Omitting the details, present the forced transverse vibrations from the general solution 	23
	in the 

form 

5< = �2�� 	μ9G<H7<9�9	ω9<, �
 + 7F9�9	ω9F, �
I:
9;< sin k9
 

	
� ≤ 
 ≤ �, 	2m� 	ν + ν<
⁄ 	< � < 	 	2� + 1
� 	ν + ν<
⁄ 
	                                               (24) 

ψ< = �2�� 	μ9G<H7<9∗ �9	ω9<, �
 + 7F9∗ �9	ω9F, �
I:
9;< cos k9
 

7<9∗ = −�	μ9 − ρω9<F+,μ9�7<9,	7F9∗ = −�	μ9 − ρω9FF+,μ9�7F9 

�9		λ, �
 = − λβ9Η9	� Hμ9	2ν + ν<
 + ωIFλF − Hμ9	2ν + ν<
 + ωIF sinH	μ9	2ν + ν<
 + ω
� − 2μ9��I + 
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+λβ9Η9	�	μ9ν< − ω
FλF − 	μ9ν< − ω
F sinH	μ9ν< −ω
� − 2μ9��I − λβ9Η9	G Hμ9	2ν + ν<
 − ωIFλF − Hμ9	2ν + ν<
 − ωIF sinH	μ9	2ν + ν<
 − ω
� − 2μ9��I + 

+λβ9Η9	G 	μ9ν< + ω
FλF − 	μ9ν< + ω
F sinH	μ9ν< + ω
� − 2μ9��I − λμ9Η9	�λF − 	μ9ν + ω
F {H	μ9ν + ω
F + μ9F	ν + ν<
FI
′	�
 sin	μ9ν + ω
� − 

−2	ν + ν<
	μ9ν + ω
HλF + μ9F	ν + ν<
FIλF − 	μ9ν + ω
F cos	μ9ν + ω
�} − 

−	λΗ9	�2G<Hμ9	2ν + ν<
 + ωIFλF − Hμ9	3ν + 2ν<
 + ωIF {μ9
′	�
 sinH	μ9	3ν + 2ν<
 + ω
� − 4μ9��I 	+ 

+ �(GHSD	�b�FbP
�OIHSD	�b�ZbP
�OI�(GHSD	�b�FbP
�OI( cosH 	μ9	3ν + 2ν<
 + ω
� − 4μ9��I}	+ 

+	 �	�D	� F�P	SDbGO
(�(GHSD	b�FbP
GOI(	{μ9
′	�
 sinH	μ9	ν + 2ν<
 − ω
� − 4μ9��I 	+ 

+ �(GHSD	b�FbP
GOIHSD		�b�ZbP
GOI�(GHSD	b�FbP
GOI( cosH 	μ9	ν + 2ν<
 − ω
� − 4μ9��]}	− 

− λμ9Η9	GλF − 	μ9ν − ω
F {H	μ9ν − ω
F + μ9F	ν + ν<
FI
′	�
 sin	μ9ν − ω
� − 

−2	ν + ν<
	μ9ν − ω
HλF + μ9F	ν + ν<
FIλF − 	μ9ν − ω
F cos	μ9ν − ω
�} − 

−	λΗ9	G2G<Hμ9	2ν + ν<
 − ωIFλF − Hμ9	3ν + 2ν<
 − ωIF {μ9
′	�
 sinH	μ9	3ν + 2ν<
 − ω
� − 4μ9��I + 

+ �(GHSD	�b�FbP
GOIHSD	�b�ZbP
GOI�(GHSD	�b�FbP
GOI( cosH 	μ9	3ν + 2ν<
 − ω
� − 4μ9��I}	+ 

+	 �	�D	� F�P	SDb�O
(�(GHSD	b�FbP
�OI(	{μ9
′	�
 sinH	μ9	ν + 2ν<
 + ω
� − 4μ9��I 	+ 

+λF − Hμ9	ν + 2ν<
 + ωIHμ9		3ν + 4ν<
 + ωIλF − Hμ9	ν + 2ν<
 + ωIF cosH 	μ9	ν + 2ν<
 + ω
� − 4μ9��}. 
Forced oscillations in the region 0≤
	 ≤
	′, 

(2�	+1)�	/(ν+ ν< )<�	<2(�	+1)�	/(ν+ ν< ) (m=0, 1,...) of the 

elastic hinge-supported beam can be obtained using 

equations (24) replacing β9 , ν, 	ν< , m, with 0, −ν, − ν< , 

−(�	+1). 

When the denominator n − x of the terms of series 	24
	becomes equal to zero, the frequency of the disturbing 

force approaches one of the values: 

ω�9cl = ±μ9ν< ± ω9c , ω�9c� = ±μ9	ν + 2ν<
 ± ω9c , ω 9c� = ±	μ9	3ν + 2ν<
 	± ω9c , ω9cl = ±μ9ν ± ω9c 		κ = 1,2,3,4
. 
which are determined from the conditions 

ω9cF − 	μ9ν ± ω
F = 0, ω9cF − Hμ9	ν + 2ν<
 ± ωIF=0, 

ω9cF − 	μ9ν< ± ω
F = 0,ω9cF − Hμ9	3ν + 2ν<
 ± ωIF=0. 

In this case, we obtain a state of resonance. 

Comparing problem (1)–(3) with problem (12)–(15), we obtain new values 

ω�9cl = ±μ9ν< ± ω9c , 	ω�9c� = ±μ9	ν + 2ν<
 ± ω9c, ω 9c� = ±	μ9	3ν + 2ν<
 ± ω9c 		κ = 1,2,3,4
,                                                            (25) 

for the state of resonance. 

The quantities	ω�9cl ,		ω�9c� , 	ω 9c�  are enumerated so that the relations were true 

ω�9c� = −	ω�9cF , ω�9cZ = −	ω�9c< , 	ω�9c� = −	ω�9cF , 	ω�9cZ = −	ω�9c< , 
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ω 9c� = −ω 9cF , ω 9cZ = −ω 9c< . 
Numerical Example 

To illustrate the effectiveness of the obtained results, 

when a steam locomotive passes the bridge, consider the 

following numerical values of the parameters for the iron 

superstructures of four single-track railway bridges with 

spans of 18.3 m, 36.6 m, 73.2 m, 109.7 m. Having velocity 

ν equal to 36.6 m/sec, the number of revolutions of the 

driving wheels of the locomotive is equal to 8 (ω=50.2) per 

second and the diameter of the driving wheels is 1.45 m¹). 

The calculation results are given in the following two tables 

and in expression (26). The tables show the values, 

resonance frequencies ω�9cl , 	ω�9c� , ω 9c� 	 as a function of the 

span of the bridge, for values n=1, i=1, calculated by 

formulas (25). 

max3|5< 5⁄ | ≈ 1,4	                                (26) 

The following parameters are taken from book 1, p. 248 

Table 1. The resonance frequencies	£�<<< , 	£�<<< , £ <<	< for of the bridge. 

 
¤ = ¥,	¦	=1 �	 ω�<<< = +k<ν< +ω<< 	ω�<<< = +k<	ν + 2ν<
 + ω<< ω <<< = +k<	3ν + 2ν<
 + ω<< 

18,3м 166,7 283,79 296,35 

36,6м 92,27 156,67 162,95 
73,2м 54,92 92,9 96,12 

109,7м 36,58 61,88 64 

Table 2. The resonance frequencies £�<<F , £�<<F , 	£ <<F  for of the bridge. 

 
¤ = ¥,	¦	=1 �	 ω�<<F = +k<ν< −ω<< 	ω�<<F = +k<	ν + 2ν<
 − ω<< ω <<F = +k<	3ν + 2ν<
 − ω<< 

18,3м 54,83 171,89 184,45 
36,6м 30,25 94,65 100,93 

73,2м 16,1 55,89 59,1 

109,7м 11,9 37,2 39,3 

 

The results of calculations, shown in these tables, show 

that in all considered cases, the resonance frequencies ω�9cl , 	ω�9c� , ω 9c� 	decrease with an increase in the span structure 

of the bridge. Expression (26) shows the maximum absolute 

value 5< 5⁄  for a span of 73.2m at the point 
	=40m. The 

values 5 and 5< represent the values of the forced vibrations 

of the beam, calculated, respectively, by formulas (10) and 

(24). Expression (26) shows that the largest absolute value of |5<| is 1.4 times more than	|5|. 
5. Conclusion 

Based on the above studies, the following conclusion can 

be made. From table 2 it can be seen that for bridges having 

small spans the resonant frequency is so high that the 

synchronization of the pulsating force and the forced 

oscillation 	24
 cannot be obtained at any velocity. Taking, 

for example, 8 (ω=50.2) revolutions of the driving wheels per 

second as the highest limit and taking the resonant 

frequencies from the above table, can conclude that the 

resonance is hardly possible for spans less than 18.3 m. For 

longer spans, the resonance phenomenon should be taken 

into account. 

It should be noted that all our calculations were based on 

the assumption that a pulsating force moves along the bridge. 

In actual conditions, we have rolling masses that will cause 

the resonant frequency of the bridge to change in accordance 

with the change in the position of the loads. This variability 

of the resonant frequency, which is especially noticeable at 

small spans, is very favorable, since the pulsating load will 

no longer give resonance during the entire passage over the 

bridge, and its increasing effect will not be so noticeable. If 

several moving loads act on the bridge, the vibrations caused 

by them should be overlapped. The main results of the 

studies described herein can be successfully applied by 

designers to solve a number of important problems for 

bridges. 
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