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Abstract: Spiking neural networks (SNNs) is a type of biological neural network model, which is more biologically 

plausible and computationally powerful than traditional artificial neural networks (ANNs). SNNs can achieve the same goals 

as ANNs, and can build a large-scale network structure (i.e. deep spiking neural network) to accomplish complex tasks. 

However, training deep spiking neural network is difficult due to the non-differentiable nature of spike events, and it requires 

much computation time during the training period. In this paper, a time-reduced model adopting two methods is presented for 

reducing the computation time of a deep spiking neural network (i.e. approximating the spike response function by the 

piecewise linear method, and choosing the suitable number of sub-synapses). The experimental results show that the methods 

of piecewise linear approximation and choosing the suitable number of sub-synapses is effective. This method can not only 

reduce the training time but also simplify the network structure. With the piecewise linear approximation method, the half of 

computation time of the original model can be reduced by at least. With the rule of choosing the number of sub-synapses, the 

computation time of less than one-tenth of the original model can be reduced for XOR and Iris tasks. 

Keywords: Spiking Neural Network, Computation Time, Linear Approximation, Sub-Synapses 

 

1. Introduction 

Recently, multilayer neural networks have been successfully 

applied to many fields including pattern recognition [1, 2], 

time series forecasting [3], and bioinformatics [4], etc. The 

basic unit of conventional artificial neural networks (ANNs) is 

called a node (or non-spiking neuron). The node is merely 

represented by non-linear activation functions without 

biological interpretability, whereas a spiking neural network 

(SNN) [5] is composed of spiking neurons that can transmit 

and receive substantial amounts of information through the 

relative timing of spikes. The characteristics of biological 

neurons are the basis of spiking neuron models. Spiking 

neurons can simulate the full process of biological neurons 

from receiving stimuli to firing spikes. This property of an 

SNN is particularly suitable for applications where the timing 

of input signals carries important information. It has been 

shown that the SNN can be applied to problems that can be 

solved by non-spiking neural networks and more importantly, 

the SNN is more powerful than conventional neural networks 

[6]. 

As the complexity of data increases, the number of 

layers will increase. It causes the network to consume 

much time for training. Accordingly, deep neural networks 

(DNNs) [7] can be optimized to work effectively. For 

instance, a binarization scheme is used to train DNNs [8]. 

It consists in training the DNNs with binary weights 

during the forward and backward propagations while 

retaining the precision of the stored weights in which 

gradients are accumulated. A fixed-point factorized 

network (FFN), which was proposed in [9], is used for 

pre-train models to reduce the computational complexity 

as well as the storage requirement of networks. The 

resulting networks have only weights of -1, 0, and 1, 

which significantly eliminates the most 

resource-consuming multiply-accumulate operations [9]. 

The hash trick can also be used for compressing neural 

networks [10]. It exploits inherent redundancy in neural 

networks to achieve drastic reductions in model size. 

Different from these approaches, a key goal of our work is 

to reduce the time consumption of the multilayer SNN. A 

time-reduced model is employed for this paper. 
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The main contributions of this work are as follows: a) 

Based on the approximation of piecewise linear manner, this 

paper proposes a set of simple spike response models. It can 

get reduce much time during the training period. b) Based on 

the simple spike response model, an SNN with multiple 

sub-synapses can be obtained. Yet the number of 

sub-synapses is not explicit. To obtain the explicit 

sub-synapses, a method of choosing the suitable number of 

sub-synapses is proposed. The manners not only simplify the 

SNN structure but can get satisfactory results. 

The rest of this paper is organized as follows. Section 2 

discusses the spike neuron model and learning algorithm 

of multilayer SNN briefly. The time-reduce model is 

derived in Section 3, it contains a set of piecewise linear 

models and a rule for choosing the number of 

sub-synapses. Simulation experiment results are provided 

in Section 4, followed by the conclusion and the future 

work in Section 5. 

2. Multilayer Spiking Neural Network 

The continuously valued activations are used for 

non-spiking DNNs communication. On the contrary, the 

SNNs transmit information between neurons depending on 

sending a series of action potentials (i.e. spike trains). A 

one-layered SNN can solve a simple non-linear problem, 

however, it may not be able to represent all possible mappings 

[11]. Therefore, the multilayer SNN is worth researching. The 

spiking neuron model and multilayer SNN learning rule are 

discussed in this section. 

2.1. SRM Neuron Model 

The SRM neuron model [12] can give a good 

approximation of the synaptic response for the neuron. 

Therefore, it is used as the target neuron model for the 

investigation of the anti-noise learning rule in this work. 

Figure 1 shows the connection of SRM-based neurons via one 

synapse. 

 

Figure 1. The connection of SRM-based neurons via one synapse. 

The state of the post-synaptic neuron j is described by a 

single variable �� in the framework of the SRM. The neuron 

is at its resting value when �� equals to zero if there is no 

input spikes and it can be denoted by ����� � 0. If �� reaches 

the threshold after summing the effects of several incoming 

spikes, an output spike is triggered. After firing, the evolution 

of �� is described by 

��	
� � �

 � 
�	��� � ∑ ∑ ∑ �����	
 � 
�	�� � ���������	���   (1) 

where ���� is the synapse weight from pre-synaptic neuron i to 

post-synaptic neuron j with a delay of ��. The 
�	�� and 
�	�� 
denote the spike-times of neuron j and neuron i, respectively. 

If 1 �  ! " � #  (n denotes the total number of firing 

spikes), then 
�	�� ! 
�	��. The function � describes the time 

course of the response to an incoming spike, which is given by 

�	$� � �% exp		1 � �%�*	$�              (2) 

where +  is the post synaptic membrane potential time 

constant. *	$� is the Heavy-side step function. H(s)=0 if s≤0 

and H(s)=1 if s>0. The return of the membrane potential to 

baseline after an action potential is described by a function �, 

which is named refractoriness. The refractoriness is 

characterized experimentally by the observation immediately 

after a first action potential. It is impossible (absolute 

refractoriness) or more difficult (relative refractoriness) to 

excite a second spike. The function � is given by 

�	$� � ��,-./		� �%0�*	$�              (3) 

where +� is a slow time constant and �, is a scale factor for 

the refractory function. 

 

Figure 2. The multilayer network architecture. The right part indicates that sub-synapses are included in each synaptic junction. 

The SNN is composed of neurons connecting with each 

other via synapses. Figure 2 shows a multilayer network 

architecture. It consists of a feedforward fully connected 

network of spiking neurons with multiple delayed synaptic 
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terminals. The different multiple delayed synaptic terminals 

are used in this work. 

2.2. Neural Network Architecture and Algorithm 

The SNNs rely on synapses to complete learning tasks. A 

synapse can be either excitatory or inhibitory. Excitatory 

synapse increases the membrane potential of the neuron upon 

receiving input spikes, whereas inhibitory synapse decreases 

the membrane potential of the neuron. The strength of a 

synapse is modeled by adjustable scalar weights [13]. It can 

change over time to express the synapse efficacy in SNNs. 

This plasticity of synapses represents a brain-inspired learning 

mechanism in neural networks, and the learning rule is aiming 

for adjusting the strength of interconnecting synapses. 

A supervised learning algorithm, the tempotron, has been 

explored in [14], where neurons learn to distinguish between 

spatial and temporal sequences of spike patterns [15]. The 

gradient descent approach is used to train the tempotron. 

However, this learning rule can only be employed in 

one-layered networks. The leaky integrated-and-fire neuron 

model [12, 16] in the tempotron is trained to only solve binary 

classification. Because this learning rule discriminates the 

patterns by neurons firing spikes or not. 

A backpropagation learning rule, named multi-spikeprop 

[17, 18], is used in our work. It is also on the basis of a 

gradient descent algorithm, and the network can converge 

gradually to the minimum error via many training epochs 

[13]. The error function is an important criterion to measure 

the error between desired and actual output spikes. It can be 

calculated by 

1 � �2∑ ∑ 	
�	�� � 
̂�	���245���6���             (4) 

where 
̂�	�� is the desired time of output spikes. Once the error 

is not a desired value, the synaptic weights will be updated. 

The updating rule of weights is the basis of gradient descent, 

and it can be calculated by 

∆� � �891 � �8 :;:<,              (5) 

where 8  is the earning rate. The gradient computation of 

synapses between neurons in the last layer and neurons in the 

hidden layer should be calculated firstly. The weights 

updating for the kth synapse between the presynaptic neuron i 

and postsynaptic neuron j can be calculated by 

∆���� � �8∇1��� .               (6) 

According to the chain rule, ∇1���  can be calculated by 

∇1��� � ∑ :;:�5	>�
45��� :�5	>�:<�5? .            (7) 

The weights updating between neurons in the input (or 

hidden) layer and neurons in the hidden layer can be computed 

by error backpropagation. It can be described as 

∆�@�� � �8∇1@�� .               (8) 

According to the chain rule, 91@��  can be calculated by 

91@�� � :;:<A�? � ∑ :;:�5	>�
:�5	>�:<A�?��	>�∈C� .          (9) 

The detailed learning rule is researched in [17, 19]. 

Although the multi-spikeprop learning rule can effectively 

handle classification tasks, it consumes much time to training 

the SNN. 

3. The Time-Reduced Model 

To solve the problem of time-consuming in the 

multilayered SNN, a set of piecewise linear spiking neural 

models and a rule for choosing the number of sub-synapses 

are proposed in this section. There is usually a trade-off 

between model accuracy and computational complexity for 

the piecewise linear spiking neuron model. For example, if 

the neural behavior is required to understand, the 

Hodgkin-Huxley model [20] will be more suitable. However, 

it is computationally expensive and cannot be simulated in 

large numbers. Therefore it is essential to simplify the SNN 

model. 

3.1. SRM Linear Approximation 

The original spike response function ε(s) is an exponential 

function, and the computation cost can be decreased by 

approximation. To reduce the computation time for multilayer 

SNN, a piecewise linear model is used to approximate the 

spike response function. 

Five piecewise linear models are used to approximate the 

spike response function in our work, i.e. two segments, three 

segments, four segments, and five segments and six segments 

respectively. The two-segment piecewise linear model is 

shown in Figure 3. The blue line is the curve of the original 

spike response function, and the black line is the approximated 

curve. It can be seen that this segment is not precise enough. 

 

Figure 3. The two-segment piecewise linear model. 

The detailed function of the two-segment model can be 

calculated by 

�	$� � D E�$ + G�, 0 < $ ≤ 8E2$ + G2, 8 < $ ≤ 50         (10) 

The parameters of E�, E2, G� and G2 are coefficients, and 
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E� � 0.1367 , E2 = −0.0232 , G� = 0.2086 , G2 = 0.9833 . 

The three-segment piecewise linear model is shown in Figure 

4. The blue line refers to the original curve of spike response 

function, and the black line refers to the curve of the 

approximated function. 

 

Figure 4. The three-segment piecewise linear model. 

The detailed function of the three-segment model can be 

calculated by 

�($) = Q ER$ + GR, 0 < $ ≤ 8ES$ + GS, 8 < $ ≤ 20ET$ + GT, 20 < $ ≤ 50         (11) 

The values of ER, ES, ET, GR, GS and GT are respectively 

0.1367, -0.0477, -0.013, 0.2086, 1.399 and 0.5939. Figure 5 

shows the four-segment piecewise linear model. The blue line 

shows the curve of the original spike response function, and 

the black line shows the curve of the approximated function. 

 

Figure 5. The four-segment piecewise linear model. 

The detailed function of the four-segment model can be 

obtained by 

�($) = U EV$ + GV, 0 < $ ≤ 8EW$ + GW, 8 < $ ≤ 20EX$ + GX, 20 < $ ≤ 30EY$ + GY, 30 < $ ≤ 50          (12) 

The values of EV , EW , EX , EY , GV , GW , GX  and GY  are 

respectively 0.1367, -0.0477, -0.0296, -0.0068, 0.2086, 1.399, 

1.0226 and 0.3376. Figure 6 shows the five-segment 

piecewise linear model. The blue line shows the curve of 

original spike response function, and the black line shows the 

curve of approximated function. 

 

Figure 6. The five-segment piecewise linear model. 

The detailed function of the five-segment model can be 

obtained by 

�($) =
Z[\
[] E�,$ + G�,, 0 < $ ≤ 5E��$ + G��, 5 < $ ≤ 8E�2$ + G�2, 8 < $ ≤ 20E�R$ + G�R, 20 < $ ≤ 30E�S$ + G�S, 30 < $ ≤ 50

        (13) 

The values of E�,, E��, E�2, E�R, E�S, G�,, G��, G�2, G�R 

and G�S  are respectively 0.2918, 0.0594, -0.0477, -0.0296, 

-0.0068, 0.0149, 0.6182, 1.399, 1.0226, and 0.3376. The 

six-segment piecewise linear model is shown in Figure 7. The 

blue line shows the original curve of spike response function, 

and the black line shows the curve of approximated function. 

 

Figure 7. The six-segment piecewise linear model. 

The detailed function of the six-segment model can be 

obtained by 

�($) =
Z[
\[
] E�T$ + G�T, 0 < $ ≤ 5E�V$ + G�V, 5 < $ ≤ 8E�W$ + G�W, 8 < $ ≤ 20E�X$ + G�X, 20 < $ ≤ 30E�Y$ + G�Y, 30 < $ ≤ 40E2,$ + G2,, 40 < $ ≤ 50

         (14) 

The values ofE�T, E�V, E�W, E�X, E�Y, E2,, G�T, G�V, G�W, G�X , G�Y  and G2,  are respectively 0.2918, 0.0594, -0.0477, 
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-0.0296, -0.0113, -0.0035, 0.0149, 0.6182, 1.399, 1.0226, 

0.4920, and 0.1893. The calculation time and approximated 

error between original and approximated function are shown 

in Table 1. It can be seen that the more the number of 

segments, the smaller the error, and the less the number of 

segments, the less time consuming. 

Table 1. The Time consumption of different piecewise linear models. 

Different functions Approximated error Time-consuming 

Original 0 0.003735 

Two segment 0.003 0.000817 

Three segment 0.0036 0.00088 

Four segment 0.0025 0.000900 

Five segment 2.1633e-4 0.001637 

Six segment 1.6045e-4 0.001702 

3.2. Method of Choosing Sub-Synapses 

In conventional neural networks, there is usually one 

synapse between two nodes. It contains multiple synapses 

between presynaptic neurons and postsynaptic neurons (i.e. 

sub-synapses) in SNNs. A suitable number of sub-synapses is 

crucial to the performance of the SNNs. For instance, too 

many sub-synapses will cause the SNN computationally 

expensive and much time-consuming. On the contrary, the 

network with fewer sub-synapses cannot work effectively. 

Therefore, a method of choosing a suitable number of 

sub-synapses is an important task. 

The number of sub-synapses is usually set to a big value 

by experience [11, 19, 21]. However, it is not suitable for all 

tasks. Thus, a rule of choosing the number of sub-synapses is 

employed for our work. It can be calculated by 

# � _#, + 1, ;̀ > 1b#,, ;̀ ≤ 1b            (15) 

where n is the current number of sub-synapses,	#, is the final 

number of sub-synapses, and 1b is the minimum acceptable 

error of multilayered SNN. It shows that the number of 

synapses increases gradually from #,. If the value of 
;̀
 more 

than the given threshold (1b ), continue to increase until it 

meets the conditions. 

4. Experimental Results 

The exclusive-or (XOR) [11] and Iris [15] datasets are 

employed to test the performance of the time-reduced model 

in this work. The temporal encoding scheme is chosen for 

encoding the data. Particularly, the iris data is encoded to 

integral spike firing time using a direct mapping method. 

4.1. Experimental Settings 

A fully connected feedforward multilayered SNN with 

multiple delays per connection is used in our work. The time 

range and time step of the network are respectively set to 50 

ms and 0.1 ms. The learning rate is set to 1. The mean squared 

error (E) is set to 0.1 as a stop criterion, and the maximum 

epoch is 1000. If iterations of the network are more than 1000 

and E>0.1, the learning process will be failed. 

All the experimental simulations are done under the 

MATLAB 2018a platform on a Windows 10 operating system 

with Intel (R) Core (TM) i5-9400 CPU 2.90GHz processor 

with 16 GB of random-access memory. 

4.2. XOR Task 

Table 2. The encoding scheme of the XOR task. 

The input data (ms) The output data (ms) 

0 0 16 

0 6 10 

6 0 10 

6 6 16 

Table 2 shows the temporal encoding scheme of the XOR task. 

For the input signals, an input spike at 0 ms represents logic 0 

while a spike at 6 ms represents logic 1. For the output, a spike at 

16 ms represents logic 0 while a spike at 10 ms represents logic 1. 

The time constant of membrane potential should be slightly 

larger than the interval of encoding. Therefore the initial value of 

τ is set to 7 ms. The network consists of three neurons (two 

coding neurons and one bias neuron) in the input layer, and a 

single neuron in the output layer. 

Table 3. The performance of different spike response models for the XOR 

task. 

Different 

models 

Average 

epochs 

Time-consuming 

(s) 

Successful 

trials (%) 

2 160 3.54 34% 

3 145 6.32 61% 

4 182 6.94 80% 

5 165 8.54 96% 

6 193 10.31 96% 

Original 179 22.64 100% 

Table 3 shows the performance of multilayer SNN using the 

model of piecewise linear approximation. It can be seen that 

the original multilayer SNN model runs 22.64s and achieves a 

hundred percent successful convergence rate. The 

two-segment piecewise linear model runs with the least time 

(3.54s), however, it only achieves a thirty-four percent rate of 

successful convergence. The five-segment and six-segment 

piecewise linear models achieve the same rate of successful 

convergence (96%), and the five-segment piecewise linear 

model consumes less time than the six-segment piecewise 

linear model. Therefore, the five-segment piecewise linear 

model is suitable for the XOR task. 

Table 4. The performance of multilayered SNN with the different number of 

sub-synapses for the XOR task. 

The number of 

sub-synapses 

Average 

epochs 

Time-consuming 

(s) 

Successful trials 

(%) 

2 N N Cannot converge 

3 N N Cannot converge 

4 N N Cannot converge 

5 N N Cannot converge 

6 30 3.60 100% 

7 68 5.99 100% 
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The number of 

sub-synapses 

Average 

epochs 

Time-consuming 

(s) 

Successful trials 

(%) 

8 29 2.87 100% 

9 31 3.01 100% 

10 69 6.77 100% 

11 49 5.09 100% 

12 33 3.57 100% 

13 34 4.03 100% 

14 17 2.55 100% 

15 91 11.14 100% 

16 179 22.64 100% 

Table 4 shows the performance of multilayer SNN with the 

different number of sub-synapses. It can be seen that the 

network with 2, 3, 4 and 5 sub-synapses cannot converge to a 

target value. The network with 14 sub-synapses carries out 17 

epochs and consumes 2.55s to converge to the target value. 

Therefore, the multilayer SNN with 14 sub-synapses is the 

best choice for the XOR task. 

 

 

Figure 8. The relationships between epochs and mean squared error under 

different spike response functions. (a). The performance of the original 

multilayer SNN. (b). The performance of multilayer SNN with the time-reduce 

model. 

The relationships between epochs and mean squared error 

under different spike response functions are shown in Figure 8. 

(a) refers to the original multilayer SNN, it carries 179 epochs 

and consumes 22.64s. (b) refers to the multilayer SNN using 

the five-segment piecewise linear model and the rule of 

choosing the number of sub-synapses, it carries out 24 epochs 

and consumes 2.47s to converge to the target value. The 

experimental result of the XOR task can prove that the method 

is effectively proposed in this paper. 

4.3. Iris Classification Task 

The iris dataset is used for this testing. It contains three 

classes (i.e. Iris Setosa, Iris versicolor, Iris Virginia) of 150 

samples, where each class corresponds to a type of iris plant. 

There are four attributes in this dataset. Each attribute 

corresponds to an input neuron. Thus, the network has four 

input neurons in the first layer and one output neuron in the 

last layer. Due to the value of each attribute being a decimal 

value, it is encoded to integral spike firing time first. The 

encoding interval is set to 1, and the time constant of 

membrane potential is set to 3 ms. 120 samples are used to 

train the multilayer SNN, and the rest samples are used to test 

the performance. 

Table 5. The performance of different spike response models for the Iris task. 

Different 

models 

Average 

epochs 

Time-consumi

ng (s) 

Average 

accuracy (%) 

2 13 224.82 63.33% 

3 39 661.21 73.33% 

4 75 1268.70 93.33% 

5 6 106.61 93.33% 

6 10 175.09 96.67% 

Original 46 794.78 96.67% 

Table 5 shows the performance of multilayer SNN using the 

model of piecewise linear approximation. It can be seen that 

the original multilayer SNN model runs 794.78s and achieves 

a 96.67 percent successful convergence rate. The five-segment 

piecewise linear model runs with the least time (106.61s), and 

it achieves a higher rate of successful convergence (93.33%). 

The five-segment piecewise linear model consumes less time 

than the six-segment piecewise linear model, however, the 

six-segment piecewise linear model can achieve the same 

successful convergence rate as the original model. Therefore, 

considering the time consumption, the five-segment piecewise 

linear model is more suitable for the Iris task. 

Table 6. The performance of multilayered SNN with the different number of 

sub-synapses for the Iris task. 

The number of 

sub-synapses 

Average 

epochs 

Time-consuming 

(s) 

Average 

accuracy (%) 

2 N N Cannot converge 

3 N N Cannot converge 

4 N N Cannot converge 

5 19 69.95 56.67% 

6 32 460.67 63.33% 

7 35 439.09 56.67% 

8 28 150.80 70% 

9 26 158.76 66.67% 

10 57 191.91 70% 

11 20 72.27 73.33% 

12 17 67.93 60% 

13 16 63.27 73.33% 

14 9 38.34 93.33% 

15 21 85.08 73.33% 

16 46 794.78 96.67% 

Table 6 shows the performance of multilayer SNN with 

the different number of sub-synapses. It can be seen that the 

network with 2, 3, and 4 sub-synapses cannot converge to a 

target value. The network with 14 sub-synapses carries out 9 
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epochs and consumes 38.34s to converge to the target value. 

Therefore, the multilayer with 14 sub-synapses is the best 

choice for the Iris task. 

Table 7. Comparison of SNN training results for Iris task. 

Algorithms Time-consuming (s) Average accuracy (%) 

SpikeProp 794.78 96.1% 

MatlabBP 912.42 95.5% 

MatlabLM 1022 95.7% 

Weight limit learning 260.62 92.6% 

SWAT 1243.14 95.3% 

This work 175.09 96.67% 

Table 7 shows the performance of this work with other 

SNN algorithms. It can be seen that our work can get an 

effective accuracy on Iris dataset with less time consumption. 

Figure 9 depicts the curves of learning performance in the 

interval of epochs and mean squared error under different 

spike response functions. (a) depicts the original multilayer 

SNN, it carries 46 epochs and consumes 794.78s. (b) depicts 

the multilayer SNN using the five-segment piecewise linear 

model and the rule of choosing the number of sub-synapses, it 

carries out 14 epochs and consumes 33.56s to converge to the 

target value. The experimental result of the Iris task is further 

explained that the method is effectively proposed in this paper. 

 

 

Figure 9. The relationships between epochs and mean squared error under 

different spike response functions. (a). The performance of the original multilayer 

SNN. (b). The performance of multilayer SNN with the time-reduce model. 

5. Conclusion 

In this paper, methods for reducing the time consumption of 

multilayer SNN were proposed. The methods include a 

piecewise linear approximation of the spike response function 

and a rule of choosing the suitable number of sub-synapses. 

The experiment of the XOR task and Iris dataset classification 

task were used to verify the performance of the proposed 

time-reduced model. The experimental results showed that the 

proposed methods can reduce time consumption and have a 

better performance. Future work includes the theoretical proof 

of the proposed methods and further exploration of spiking 

neuron models and deep SNNs. 
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